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Quartiles 

• Quartiles divide a data set into four equal parts. Each quartile represents 25% of the data.  

 

 

• There are three main quartiles: 

➢ Q1 (First Quartile): This is the 25th percentile, 

meaning that 25% of the data falls below Q1.  

It’s also the median of the lower half of the data. 

➢ Q2 (Second Quartile): This is the 50th percentile, 

which is also the median of the entire data set.  

50% of the data falls below Q2. 

➢ Q3 (Third Quartile): This is the 75th percentile, 

meaning that 75% of the data falls below Q3.  

It’s the median of the upper half of the data. 

 

• Interquartile Range (IQR): The range between Q1 and 

Q3 (i.e., Q3 − Q1). It shows the spread of the middle 50% 

of the data and is useful in identifying outliers and it’s 

more robust for extreme values because it gives the range 

of the middle values. 

• Finding Quartiles  

➢ To find the quartiles for a set of data, do the following:  

✓ Arrange the data from smallest to highest (ordered 

array). 

✓ Locate the median (Q2). 

✓ The half to the left: locate their median (Q1).  

✓ The half to the right: Locate their median (Q3). 
 

 Example with odd (n): 

✓ Times needed for 15 tablets to disintegrate in minutes:  

 5, 10, 10, 10, 10, 12, 15, 20, 20, 25, 30, 30, 40, 40, 60 

✓ Data is already in an order from smallest to highest. 

✓ Median is the (n+1/2)th = 8th = 20 

✓ For the half to the left: n=7, median = 4th =10 minutes 

✓ For the half to the right: n=7, median = 4th =30 minutes 

▪ Q1=10 minutes; Q2= 20 minutes; Q3=30 minutes. 

▪ IQR=Q3-Q1=20 minutes 

✓ This means that 25% of tablets need less than 10 minutes to 

disintegrate. Also 50% of tablets need 20 minutes to disintegrate. Before 30 minutes, 75% of all  
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tables were disintegrated. 25% only of these tablets need more than 30 minutes to disintegrate. 

 Example with even (n): 

✓ Times needed for 20 capsules to disintegrate in minutes:  

      5, 10, 10, 15, 15, 15, 15, 20, 20, 20, 25, 30, 30 40, 40, 45, 60, 60, 65, 85 

✓ Data is already in an order from smallest to highest 

✓ Median is the mean of the two middle values (n/2)th and ((n/2) + 1)th  

Median =10th and 11th =(20+25)/2= 22.5 

✓ For the half to the left: n=10, median=mean of 5th & 6th =15 minutes 

✓ For the half to the right: n=10, median=mean of 5th & 6th =42.5 

▪ Q1=15minutes; Q2= 22.5 minutes; Q3=42.5 minutes.  

▪ IRQ = 42.5 – 15 = 27.5 minutes. 

 

 Example: 

✓ Consider the elimination half-lives of two 

synthetic steroids have been determined using 

two groups, each containing 15 volunteers. 

✓ The results are shown in the following table 

with the values ranked from lowest to highest 

for each steroid.  

✓ The median (second quartile) indicates 

generally longer elimination half-lives for 

steroid 1 relative to steroid 2.  

✓ The IQR for the half-life of steroid 2 is only 

half that for steroid 1, duly reflecting its less 

variable nature.  

✓ The interquartile range indicates greater 

variability for the first steroid 

✓ Just as the median is a robust indicator of 

central tendency, the interquartile range is a 

robust indicator of dispersion.  

✓ The interquartile range is a more  

useful measure of spread than range as it describes the middle 50% of the data values and thus 

less affected by outliers 

• Box and whisker plot 

➢ A box-and-whisker plot can be useful for handling many data values.  

➢ It shows only certain statistics rather than all the data.  

➢ Five-number summary is another name for the visual 

representations of the box-and-whisker plot.  

➢ The five-number summary consists of the median, the 

quartiles, and the smallest and greatest values in the 

distribution (not including outliers).  

➢ Immediate visuals of a box-and-whisker plot are the 

center, the spread, and the overall range of distribution. 

 

➢ The first step in constructing a box-and-whisker plot is to first find the median (Q2), the lower   

quartile (Q1) and the upper quartile (Q3) of a given set of data.  

http://www.mathsteacher.com.au/year10/ch16_statistics/04_spread/24spread.htm
http://www.mathsteacher.com.au/year10/ch16_statistics/04_spread/24spread.htm
http://www.mathsteacher.com.au/year10/ch16_statistics/04_spread/24spread.htm
http://www.mathsteacher.com.au/year10/ch16_statistics/04_spread/24spread.htm
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 Example: 

✓ The following set of numbers are weights of 10 patients in hospital (kgs): 

 

 

 

 

 

 

 

 

➢ Outlier calculations 

✓ Outliers (extreme values) are values that are much bigger or smaller (distant) than the rest of the 

data. 

✓ In order to be an outlier, the data value must be: 

▪ Larger than Q3 by at least 1.5 times the interquartile 

range (IQR), or  

▪ Smaller than Q1 by at least 1.5 times the IQR. 

✓ Represented by a dot on the box and whisker plot. 

  

 Example: 

✓ Data set: 1, 55, 60, 70, 80, 85, 135 

✓ Q1= 55, Q2= 70, Q3= 85, IQR = 85 – 55 = 30 

✓ The lowest suggested value = Q1 – 1.5 IQR = 55 - 1.5(30) = 10 

✓ The highest suggested value = Q3 + 1.5 IQR = 85 + 1.5(30) = 130 

✓ 1<10 and 135>130 so they are outliers represented by a dot on the box and whisker plot. 

• How to calculate Q1, Q2, Q3 for intervals? 

➢ Q2 is the median: 

✓ Rank of Q2 = 169/2 = 84.5 

✓ Q2 = 29.5 + ( 
𝟖𝟒.𝟓−𝟕𝟎

𝟒𝟕
 ) ∗ 𝟏𝟎 = 32.6 

➢ Q1 is the 25th percentile: 

✓ Rank of Q1 = 169/4 = 42.25 

✓ Q1= 19.5 + ( 
𝟒𝟐.𝟐𝟓−𝟒

𝟔𝟔
 ) ∗ 𝟏𝟎 = 25.29 

➢ Q3 is the 75th percentile 

✓ Rank of Q1 = 169*3/4 = 126.75 

✓ Q3= 29.5 + ( 
𝟏𝟐𝟔.𝟕𝟓−𝟏𝟏𝟕

𝟑𝟔
 ) ∗ 𝟏𝟎 = 32.2 

• Geometric standard deviation 

➢ The geometric standard deviation (GSD) measures the spread of a set of numbers that are best 

represented by their geometric mean.  

➢ It is often used in data sets that involve multiplicative processes, such as growth rates or logarithmic 

distributions, where the geometric mean is more appropriate than the arithmetic mean. 
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➢ Log GSD = √
∑ (𝐥𝐨𝐠 𝐱𝐢−𝐥𝐨𝐠 𝐆𝐌)𝟐𝐧

𝐢=𝟏

𝐧−𝟏
   Then anti-log for that value we obtained 

 Example: 

Data set: 89, 90, 87, 95, 86, 81, 120, 105, 83, 88, 91, 79 

✓ Compute: mean, variance, standard deviation. 

✓ Compute: median, the quartiles, and IQR. 

✓ Construct a Box and Whisker plot for the data above. 

✓ If the data point 79 changed to 197, calculate the new mean and the median and compare them to 

the old one? What do you conclude from this comparison? 

• Let’s start: 

The order array: 79, 81, 83, 86, 87, 88, 89, 90, 91, 95, 105, 120 

➢ Mean (Average) = (89+90+87+95+86+81+120+105+83+88+91+79)/12 ≈ 91.17 

➢ Standard deviation: SD =√
∑  𝐧

𝐢=𝟏 (𝐱𝐢−�̄�)𝟐

𝐧−𝟏
 = 10.86 

➢ Variance: S2 = 
∑(𝐱−𝐱 ̅)𝟐

𝐧−𝟏
 = 117.97 

➢ Median (Q2): the median is the average of the 6th and 7th values = (88+89)/2 = 88.5 

➢ First Quartile (Q1): the median of the lower half of the data (the first 6 numbers) = (83+86)/2 = 84.5 

➢ Third Quartile (Q3): the median of the upper half of the data (the last 6 numbers) = (91+95)/2 = 93 

➢ Construct a Box and Whisker plot 

✓ Minimum: 79 

✓ Q1: 84.5 

✓ Median (Q2): 88.5 

✓ Q3: 93 

✓ Maximum: 120 

 

 

➢ If the data point 79 changed to 197, calculate the new mean and the median and compare them to the 

old one? What do you conclude from this comparison? 

✓ New order array: 81, 83, 86, 87, 88, 89, 90, 91, 95, 105, 120, 197 

✓ Mean= 101   

✓ Median = (89+90)/2 = 89.5 

✓ This shows that the mean is more sensitive to extreme values or outliers, while the median is a 

more robust measure of central tendency that is less affected by outliers. 

 



Arkan academy

Arkanacademy

www.arkan-academy.com

+962 790408805

علم فی کل مکان 


